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Glassy random matrix models
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~Received 28 November 2001; revised manuscript received 15 February 2002; published 17 May 2002!

This paper discusses random matrix models that exhibit the unusual phenomena of having multiple solutions
at the same point in phase space. These matrix models have gaps in their spectrum or density of eigenvalues.
The free energy and certain correlation functions of these models show differences for the different solutions.
This study presents evidence for the presence of multiple solutions both analytically and numerically. As an
example this paper discusses the double-well matrix model with potentialV(M )52(m/2)M21(g/4)M4,
where M is a randomN3N matrix ~the M4 matrix model! as well as the Gaussian Penner model with
V(M )5(m/2)M22t ln M. First this paper studies what these multiple solutions are in the large N limit using
the recurrence coefficient of the orthogonal polynomials. Second it discusses these solutions at the nonpertur-
bative level to bring out some differences between the multiple solutions. Also presented are the two-point
density-density correlation functions, which further characterize these models in a different universality class.
A motivation for this work is that variants of these models have been conjectured to be models of certain
structural glasses in the high temperature phase.

DOI: 10.1103/PhysRevE.65.056115 PACS number~s!: 02.50.2r, 61.20.Lc, 02.70.Ns
ny
er
ra
t o
di
t i
e
e
ud
ith
un
-c

e
ug
b

ibi

o-
il

s
e
W

in
ia
th
ne

s

ess

m

ant,
hus

r
of

l.
the
ch

rue
no-
gh
di-

o
seg-
al
I. INTRODUCTION

Matrix models are known to be of importance in ma
diverse areas, for example, in quantum chaos, disord
condensed matter systems, two-dimensional quantum g
ity, quantum chromodynamics, and strings. In the contex
the one-matrix models, the models that have been stu
correspond to an eigenvalue distribution on a single cu
the complex plane where the eigenvalue density is nonz
@1#. An obvious generalization is to study a matrix mod
with a more complicated eigenvalue structure. Here we st
a class of models with a single Hermitian matrix but w
two cuts for the eigenvalue density and point out some
usual features of these models different from the single
matrix models. One of the important differences observed
these models is that they have multiple solutions whose
fect appears in certain correlation functions. This work s
gests the possibility that these multiple solutions may
glassy and hence these models may be useful in descr
certain real disordered glassy systems Refs.@2,3#.

We study here the matrix model with a double-well p
tential as well as the Gaussian Penner model where sim
results are obtained Ref.@4#. In both cases the potential i
symmetric about the origin. In addition to the usual symm
ric solutions we discuss the symmetry breaking solutions.
study these solutions in the largeN limit and then at the
nonperturbative level. We also calculate the two-po
density-density correlators using orthogonal polynom
methods and methods of steepest descent which streng
the above observations and classifies the models in a
universality class@5,6#.

II. NOTATIONS AND CONVENTIONS

Let M be aN3N Hermitian matrix. The partition function
to be considered isZ5*dMe2N Tr V(M ). The Haar measure i
given by dM5) i 51

N dMii ) i , jdMi j
(1)dMi j

(2) where Mi j

5Mi j
(1)1 iM i j

(2) ; there areN2 independent variables.V(M ) is
1063-651X/2002/65~5!/056115~10!/$20.00 65 0561
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a polynomial in M: V(M )5g1M1(g2/2)M21(g3/3)M3

1(g4/4)M41•••. Tr V(M ) and the measuredM are invari-
ant under the change of variablesM→M 85UMU† whereU
is a unitary matrix. We can use this invariance to expr
Z as an integral over the eigenvaluesl1 ,l2 , . . . ,lN

of M. Writing M5UD8U† where D85diag(l1 ,
l2 , . . . ,lN), the partition function becomes Z
5*dU*2`

` ) i 51
N dl iD(l)2 exp@2N(i51

N V(li)#, where D(l)
5) i , j ul i2l j u is the Vandermonde determinant arising fro
the change of variables. The integrationdU is trivial because
the integrand is independent ofU due to the invariance, and
gives a constant factor. By exponentiating the determin
one arrives at the Dyson gas or Coulomb gas picture. T
the partition function isZ5C*2`

` ) i 51
N dl ie

2S(l), where
S(l)5N( i 51

N V(l i)22( iÞ j lnuli2lju, andC is a constant.
This is a system ofN particles with coordinatesl i on the

real line, confined by the potentialV and repelling each othe
with a logarithmic repulsion. The spectrum or the density
eigenvaluesr(x)5^(1/N)( i 51

N d(x2l i)& is, in the largeN
limit, just the Wigner semicircle for a quadratic potentia
The physical picture is that the eigenvalues try to be at
bottom of the well. But it costs energy to sit on top of ea
other because of logarithmic repulsion, so they spread.r has
support on a finite line segment. This continues to be t
whether the potential is quadratic or a more general poly
mial and depends only on there being a single well thou
the shape of the Wigner semicircle is correspondingly mo
fied. For the quadratic potentialV(x)5(m/2)x2 the density is
r(x)5(1/p)A(x22a2) where xP@2a,a#, and r(x)50
elsewhere. The region@2a,a# is said to be the ‘‘cut’’ where
r has support. The end of the cut is given bya5A2/m. See
Fig. 1.

On changing the potential more drastically by having tw
wells the density can get a support on two disconnected
ments Refs.@7,8#. The simplest example is the potenti
V(M )5(m/2)M21(g/4)M4 with m,0, g.0. When the
wells are sufficiently deep, specifically, whenumu.2Ag, the
©2002 The American Physical Society15-1
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density of eigenvalues is given by

r~x!5
g

p
xA~x22a2!~b22x2!, a<x<b or 2b<x<2a

50 otherwise, ~2.1!

where a25(1/g)@ umu22Ag# and b25(1/g)@ umu12Ag#.
The eigenvalues lie in symmetric bands centered aro
each well. Thusr has support on two line segments. Asumu
approaches 2Ag from below,a→0 and the two bands merg
at the origin. Form.22Ag, the density is

r~x!5
gx2

p
Ax22

2m

g
,

2A2umu
g

,x,A2umu
g

50 otherwise. ~2.2!

The phase diagram and density of eigenvalues for this ca
shown in Fig. 2.

The simplest way to determiner(z) explicitly is to use
the generating functionF(z)5^1/N Tr 1/(z2M )&. F(z) sat-
isfies a Schwinger-Dyson equation whose solution isF(z)

FIG. 1. ~a!. The confining potential.~b! The density of eigen-
values.

FIG. 2. ~a! The double-well potential.~b! Density of eigenval-
ues.~c! The phase diagram.
05611
d

is

51
2@V8(z)1AD# with D(z)5V8(z)224b(z) and b(z)5gz2

1m1g^(1/N)Tr M2& ~see Ref.@4#!. The densityr(x) is then
determined by the formular(z)52(1/2p)ImAD(z). In
what follows we will outline the recurrence coefficien
method of the orthogonal polynomials to establish that th
exist multiple solutions that give the same free energyG,
F(z), andr(z) in the largeN limit but differ at higher orders.
Then we give the results for the two-point correlators~also
known as the ‘‘smoothed’’ or ‘‘long range’’ correlators!;
these tend to different limits asN is taken to infinity along
different sequences~odd or even!. This property is similar to
that suggested in another model of glasses Ref.@9#.

III. ORTHOGONAL POLYNOMIAL APPROACH

The partition functionZ can be rewritten in terms of the
orthogonal polynomialsPn . These are defined asPn5ln

1Cn21
(n) ln211•••1C1

(n)l1C0
(n) , whereCi

(n) are constants,
and satisfy the orthogonality conditions (Pn ,Pm)
5*2`

` dle2NV(l)Pn(l)Pm(l)5hndnm . For example,
P0(l)51, P1(l)5l1c1

(1) , P2(l)5l21c1
(2)l1c0

(2) , . . . .
Then the partition function in terms of the orthogonal po
nomials is, Ref.@10#,

Z5E )
i 51

N

dl ie
2N(V(l)U P0~l1! ••• P0~lN!

P1~l1! ••• P1~lN!

A

PN21~l1! ••• PN21~lN!

U .

~3.1!

Z can be expressed in terms of thehn’s; Z
5N!h0h1h2•••hN21. For example, in theN52 case,
Z 5 * d l1 d l2 exp@ 2N V( l1 ) 2 N V( l2 ) # @ P0 ( l1) P1 ( l2 )
2P0(l2)P1(l1)#

25h0h11h0h152!h0h1.

The recurrence coefficients

The Pn satisfy recurrence relations, Ref.@10#,

xPn5Pn111SnPn1RnPn21 , ~3.2!

whereRn andSn are the recurrence coefficients that depe
on the potential. These recurrence coefficients are centra
our analysis, since the free energy and all correlation fu
tions can be expressed in terms of these coefficients.
reason why thePn’s satisfy such a simple recursion equatio
is that*xPnPn22e2NV(x)dx50 becausexPn22 is a polyno-
mial of degreen21 and can be expressed as a superposi
of Pn21 ,Pn22 , . . . ,P0. ThusPn22 and lower order polyno-
mials do not appear on the right hand side of the recurre
relation, Eq.~3.2!. It can be shown thathn5hn21Rn . Thus
the product h0h1•••hN215h0(h0R1)(h0R1R2)•••
(h0R1•••RN)5h0

NR1
N21R2

N22
•••RN21, hence the free en

ergy G5 ln Z5ln N!1N ln h01(n51
N21(N2n)ln Rn .

To solve for the recurrence coefficients we have th
methods based on~i! integrals,~ii ! recurrence relations, an
~iii ! an effective potential.
5-2
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1. Integrals

The recurrence coefficients can be determined by in
grals or momentsI n5*dxxne2NV(x) as described below. Th
Pn’s can be expressed in terms ofRn and Sn as Pn11
5xPn2SnPn2RnPn21, with P051, P15(x2S0), andP2
5(x2S1)(x2S0)2R1, etc. Consider the equation
5(P0 ,P1)5*dx(x2S0)e2NV(x), this results in an integra
equation for the coefficientS0, i.e., S05(1/h0)*dxxe2NV(x)

5I 1 /I 0. As another example the recurrence coefficientR1
can be determined as follows. The integral expression for
recurrence coefficientR1 is then found fromR15h1 /h0,
where h05*dxe2NV(x)5I 0 and h15*dxe2NV(x)P1

2(x)
5 *dxe2NV(x) (x2S0)2 5 *dxe2NV(x) (x222xS01S0

2) 5 I 2

22I 1S01S0
2. HenceR15(I 2 /I 0)2(I 1 /I 0)2. Similar expres-

sions for all the other recurrence coefficients in terms
integrals can be found.

2. Recurrence relations

The recurrence coefficients satisfy recurrence relati
that follow from the identities@10#

E dxe2NV(x)Pn~x!V8~x!Pn~x!50 ~3.3!

and

nhn215NE dxe2NV(x)Pn~x!V8~x!Pn21~x! . ~3.4!

Identity ~3.3! follows from the identity 0
5*Pn(x)Pn8(x)e2NV(x) that holds becausePn8 , being a lin-
ear combination ofPn21 and lower order polynomials, is
orthogonal toPn . Identity ~3.4! follows from the identity
*Pn8(x)Pn21(x)e2NV(x)5nhn21.

Let us take the following examples.
~a! V(x)5(m/2)x2

For this potential the recurrence relation I is
5m(Pn ,Pn111SnPn1RnPn21)5Snhn , which implies Sn
50, while the recurrence relation II isnhn215mN(Pn ,Pn
1Sn21Pn211Rn21Pn22)5mNhn , which implies n/N
5mRn . This determines exactly the recurrence coefficie
Sn50 andRn5n/Nm for this potential.

~b! V(x)5(m/2)x21(g/4)x4

The recurrence relation I is

05mSn1g@Rn11~Sn1112Sn!1Rn~2Sn1Sn21!1Sn
3#

~3.5!

while II is

n

N
5mRn1g~Rn211Rn1Rn11!1Sn

21Sn21
2 1Sn21Sn .

~3.6!

Using the initial values forR050, S0, and R1 we can
determineS1 ,R2 , . . . using the above recurrence relatio
for the recurrence coefficients.
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-

e

f

s

s

For this potential we now consider the two cases cor
sponding toV having one or two wells.

~1! The one-well case, m.0, g.0. It follows that Sn
50, because allI n are zero for oddn wheneverV(x) is an
even function ofx. Then the recurrence relation I is triviall
satisfied. The recurrence relation II is

n

N
5Rn@m1g~Rn111Rn1Rn21!#. ~3.7!

Thus Rn115n/gNRn2m/g2Rn2Rn21. We determineR1
5I 2 /I 02(I 1 /I 0)2 by evaluatingI 2 , I 1, and I 0 numerically
and evaluateRn for n.1 using this equation. The resul
shown in Fig. 3, suggests thatRn’s lie on a smooth curve.
This curve is analytically determined as follows: For t
largeN limit we setn/N5x and make the ansatz thatRn is a
smooth function of x and expand as Rn5R(x)
1(1/N)R1(x)1(1/N2)R2(x)1•••. Then to leading order in
N Eq. ~3.7! implies thatx5R(x)@m13gR(x)#, which is a
quadratic equation inR(x) with the solution R(x)
5(1/6g)@2m6Am2112gx#. This fits very well with the
numerical evaluation ofRn , which can be approximated by
smooth curve at largeN as shown in Fig. 3.

The generating function for the single-well case is giv
by ~see Ref.@4#!

F~z!5E
0

1

dx
1

Az224R~x!
. ~3.8!

On substitutingR(x) in the above equation for the genera
ing function one gets the same answer as that found by
Schwinger-Dyson equation. Equation~3.8! yields the expres-
sion Eq.~2.2! for the density of eigenvalues, with a sing
cut.

~2! The two-well case, m,0, g.0. Figure 4 exhibits a
numerical result forRn in this region of phase space, whic
shows that the assumption of a single smooth function
scribing Rn is no longer correct. It suggests the followin
ansatz forRn at largeN.

For n<n̄ ~for some n̄ to be determined!, we have a
‘‘period-2’’ structure

FIG. 3. Recurrence coefficients for the single well.
5-3
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Rn5H An5A~x!1
1

N
A1~x!1••• for n even

Bn5B~x!1
1

N
B1~x!1••• for n odd,

~3.9!

and for n.n̄, we have a ‘‘period-1’’ structure~as for the
one-well case!

Rn5R~x!1
1

N
R1~x!1•••. ~3.10!

We denotex̄5n̄/N. Substituting Eq.~3.9! into Eq. ~3.7! and
equating equal powers of 1/N we get, forx< x̄5m2/4g,

A~x!5
1

2g
@ umu2Am224gx#,

B~x!5
1

2g
@ umu1Am224gx#. ~3.11!

For x> x̄, substituting Eq.~3.10! into Eq. ~3.7! we get

R~x!5
1

6g
@2m1Am2112gx#. ~3.12!

The above analytical result and numerical figure agree v
well. Note thatx̄51 is the equation for the phase bounda
between one-cut and two-cut phases~see Sec. II! in the
double-well region of the parameter space. The genera
function in terms of the recurrence coefficients for the tw
well case is~see Ref.@4# for a derivation!

F~z!5E
0

1

dx
z

A$z22@A~x!1B~x!#%224AB
if x̄.1

5E
0

x̄
dx

z

A„z22~A1B!…224AB

1E
x̄

1

dx
1

Ax224R~x!
if x̄,1. ~3.13!

FIG. 4. Recurrence coefficients for the double well.
05611
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Whenx̄.1, i.e., in the two-cut phase, substitutingA,B from
Eq. ~3.11!, F(z)5 1

2 @mz1gz32gzA(z22a2)(z22b2)#,
which is the same as obtained by the Schwinger-Dyson eq
tion. This yields the solution Eq.~2.1! for the density of
eigenvalues. Whenx̄,1, Eqs.~3.11! and ~3.12! lead to the
one-cut solution Eq.~2.2!.

3. Effective potential method for determining recurrence
coefficients

Numerically we can evaluate the recurrence coefficient
minimizing an effective potentialVe f f that can be determined
from the recurrence relations, e.g., forV(x)5sx1(m/2)x2

1(g/2)x4, the recurrence relations are

n

N
5Rn@m1g~Rn111Rn1Rn211Sn

21Sn21
2 1Sn21Sn!#,

05s1mSn1g@Rn11~Sn1112Sn!1Rn~2Sn1Sn21!1Sn
3#.

~3.14!

It is easy to see that if one defines

Ve f f5 (
n50

` H 2n

N
ln Rn1mRn1

g

2
~Rn

212RnRn11!1sSn

1
m

2
Sn

21
g

4
Sn

41gRn~Sn
21Sn21

2 1Sn21Sn!J , ~3.15!

then the recurrence relations follow by setting]Ve f f /]Rn
50 and ]Ve f f /]Sn50. For s50, setting Sn[0 in Eq.
~3.15! and minimizing with respect toRn yields period-1 or
period-2 solutions forRn as shown in Figs. 3 and 4. How
ever, whensÞ0, m,0, g.0, @i.e., V(x) has two wells,
which are asymmetric!, then numerical minimization of Eq
~3.15! with respect toRn andSn yields a solution of the type
displayed in Fig. 5. The figure suggests that the recurs
coefficients possibly become chaotic. However, whether t
are really chaotic or whether this is only apparently so,
quires more detailed numerical work@11,28#. It would be
rather interesting to do this and characterize this chaos
also to understand why the recursion coefficients are so c
plicated. At any rate, this suggests that it might be interes
to explore solutions of the Eqs.~3.14! for nonzero but small
s, and see whether ats50, there are alternate solution
~other than the one withSn[0 discussed earlier!. This in-
deed turns out to be the case. Figure 6 shows a nume
solution to Eq.~3.14! with s50, obtained by first obtaining
solutions for progressively decreasing nonzero values os,
and using the solution for a particular value ofs as an initial
condition to get a solution for the next smaller value ofs. As
seen in Fig. 6, even ats50, we can get a solution withSn
Þ0 by this procedure. As we show analytically in the fo
lowing sections, there is a large family of multiple solutio
that exist ats50. One possible explanation for the appare
chaos in Fig. 5 is that a nontrivial mixing between multip
solutions might be occurring.
5-4
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FIG. 5. ~a! Recurrence coefficientsRn for the asymmetric double well.~b! Recurrence coefficientsSn for the asymmetric double well.
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IV. MULTIPLE SOLUTIONS IN THE SYMMETRIC M 4

MATRIX MODEL

The simplest way to understand the existence of mult
solutions that appear in these models is to consider the
lowing integral:

S05
I 1

I 0
5

E
2`

`

dxxe2NV(x)

E
2`

`

dxe2NV(x)

~4.1!

for V(x)5sx1(m/2)x21(g/4)x4 with m,0 andg.0, in
the limit s→0, V has a maximum atx50 and minimum at
x5x656Aumu/g. The integralI 1 in Eq. ~4.1! is zero if we
takes[0, and then takeN→` for then the integrand is an
odd function. HenceS050 for s50. However, let us take
sÞ0 first, evaluate the integral in the limitN→` and then
take the limits→0. The integral can be evaluated using t
saddle point method. Since forsÞ0, one of the minimas
gives dominant contribution, the result isS05x1 as s
→02. ThusS0 depends on the order of the limitsN→` and
s→0.

A more precise way of establishing the presence of m
tiple solutions in these models is by using the recurre
coefficients; the previous sections have built up the tools
will be used here. Let us relax the conditionSn50; we will
find that this will be interesting. Consider a period-2 ans
for both Rn andSn . Then

Rn→An , Sn→Cn for n even

and

Rn→Bn , Sn→Dn for n odd. ~4.2!

As before, in the largeN limit, settingAn , Bn , Cn , andDn
to be equal to smooth functions ofx[n/N, denotedA,B,C,
D, respectively, one finds that Eqs.~3.14! with s50 reduce
to
05611
e
l-

l-
e
at

z

n even x5A@m1g~2B1A1C21D21CD!#

n odd x5B@m1g~2A1B1C21D21CD!#

n even 05mC1g@B~D12C!1A~D12C!1C3#

n odd 05mD1g@A~C12D !1B~C12D !1D3#.
~4.3!

There are four equations and four unknowns here but a
some work we find that there are only three independ
equations. The three independent equations are

C1D50,

A1B1C25
2m

g
,

AB5
x

g
. ~4.4!

Thus there is an infinite class of solutions labeled by o
function of x in the largeN limit. For example, let us con-
sider the two extreme solutions.~i! The ‘‘symmetric solu-
tion,’’ characterized byC2D50. Then Eq.~4.4! implies C
5D50, andA(x),B(x) are given by Eq.~3.9!. This is the
same solution as discussed in Sec. III.~ii ! The ‘‘maximally
asymmetric solution’’ characterized byA2B50. Then Eq.
~4.4! implies A5B5R5Ax/g and C52D5@ umu/g
2A4x/g#1/2 . The entire infinite class of solutions have th
same eigenvalue density and free energy in the largeN limit.
This can be seen by evaluating the generating function
turns out to be

F~z!5E
0

1

dx
2z2~C1D !

A@z22z~C1D !2~A1B2CD!#224AB
.

~4.5!

Equation~4.5! contains precisely the same three combin
tions that are fixed by the recurrence relation Eq.~4.4!.
5-5



ge
-

on
em
cu

a
g
t
b

y

a-

ty

us
in

rs

pl
io

lu-
me

e-

sly

nd

N. DEO PHYSICAL REVIEW E 65 056115
Therefore independent of which solution is chosen we
the sameF(z). SinceF(z) determinesr and the latter deter
minesG at largeN, this proves that in the limitN→` we
have an infinite set of solutions of the recurrence relati
with the same eigenvalue density and free energy. This d
onstrates the presence of multiple solutions from the re
rence coefficient point of view.

V. NONPERTURBATIVE SOLUTION

The multiple solutions found above show differences
higher powers of 1/N, for example, in the double-scalin
limit, Refs. @8,12–18#, which we describe in this section. Le
us begin by taking the symmetric solution and proceed
expanding the even, odd recurrence coefficientsA,B as

An5a01e@ f e~ t !1 f 0~ t !#1e2@r e~ t !1r 0~ t !# n even,

Bn5a01e@ f e~ t !2 f 0~ t !#1e2@r e~ t !2r 0~ t !# n odd,
~5.1!

where x5n/N512e2t, a052m/2g, and e5N21/3. Then
upon equating equal powers ofe, we get f e5r 050, f 0
5 f (t), r e5( f 22t)/4, where the susceptibility is given b
x'( f 21t)/4. f satisfies f 92 1

4 f 31 1
2 f t50 the Painleve II

equation.
We then take the asymmetric solution withA2BÞ0, C

2DÞ0. On making the expansion

Cn5eg~ t !1e2 . . . ,

Dn52eg~ t !1e2 . . . , ~5.2!

we get the following coupled equation Refs.@15–18# f 9
2 1

4 f (g21 f 2)1 1
2 f t50 andg92 1

4 g(g21 f 2)1 1
2 gt50. If we

make the substitutionf 5r cosu, g5r sinu, wherer and u
are functions oft, thenr satisfies a modified Painleve equ
tion

r̈ 2
1

4
r 31

1

2
tr2

l 3

r 3 50, r 2u̇5 l 5const. ~5.3!

The casel 50 is the Painleve II equation. The susceptibili
x'( f 21g21t)/45(r 21t)/4 and x'3t/42@(11 l 2)/4#t22

1•••, which is very different from the symmetric case. Th
the multiple solutions show differences at higher order
1/N.

VI. DISTINGUISHING MULTIPLE SOLUTIONS:
CORRELATORS, ODD AND EVEN N

Multiple solutions are distinguished by certain correlato
Consider the correlator ^Tr M Tr M &c5^Tr M Tr M &
2^Tr M &2 where ^O&5(1/Z)*dMe2N Tr V(M )O. It can be
shown@4# that ^Tr MTr M &c5RN . SinceRN depends on the
choice of the solution, this demonstrates that the multi
solutions under discussion give rise to different correlat
functions in general. In particular note thatRN5AN if N is
even andRN5BN if N is odd. For the ‘‘symmetric solution’’
AÞB, hence this correlator changes byO(1) asN goes from
05611
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t
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e
n

odd to even. However for the maximally asymmetric so
tion A5B, hence this correlator remains essentially the sa
asN is changed from odd to even.

Another example of a correlator that distinguishes b
tween the two solutions is

^Tr M Tr M Tr M &c5RN~SN212SN!. ~6.1!

For the symmetric solutionSn50 for all n, hence this cor-

FIG. 6. Graphs of recursion coefficients for a spontaneou
broken solution of the double-well potential withN5512, m
522, g51. ~a! Recurrence coefficientsRn , ~b! recurrence coeffi-
cientsSn after 100 000 minimization steps from a random start, a
~c! orbit in theA-B vs C-D plane.
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FIG. 7. Eigenvalue distri-
bution for even and oddN:
~a! N524, symmetric solution;
~b! N524, asymmetric solution;
~c! N525, symmetric solution;
~d! N525, asymmetric solution.
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relator vanishes. For the asymmetric solutionSn is period 2
and the correlator changes sign while going from odd to e
N.

The orthogonal polynomialPn can be thought of as a
‘‘wave function’’ of a ‘‘state’’ un& in the ‘‘coordinate basis,’’
i.e., ^lun&5Pn(l)/Ahne2(N/2)V(l), whereul& are eigenstates
of the operatorM̂ . The operatorM̂ is defined in the basis o
statesun& as the matrix

F S0 AR1 0 •••

AR1 S1 AR2 •••

0 AR2 S2 •••

G , ~6.2!

which follows from the recurrence relation satisfied by t
orthogonal polynomials, Eq.~3.7!; see Ref.@19# for more
details. It can be shown that the density of eigenvalues
this matrix in the largeN limit is preciselyr(l). It is there-
fore of interest to calculate the eigenvalues of this mat
Since the matrix elements are given by the recurrence c
ficients we can determine the eigenvalues numerically~see
Sec. III A! from a given solution of the recurrence coef
cients. The figures show the location of the eigenvalues
the symmetric solution and the maximally asymmetric so
tion ~see Fig. 7!.

For N even, one half of the eigenvalues are in one w
and the other half in the other well. While this is true for bo
solutions the detailed positions are not the same. WhenN is
odd, for the maximally asymmetric solution one extra eige
value is located in one of the wells~the well it is located in
depends on the sign ofS0). For the symmetric solution this
extra eigenvalue is in the center, thus preserving the sym
try between both wells. This seems to suggest that the b
effect of the two solutions is the same but they differ by o
eigenvalue effects.
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Further evidence for the effects of multiple solutio
comes from correlation functions of the density opera
r̂(x)51/N Tr d(x2M ). The explicit expression for the
smoothed two-point correlator for a general two-cut solutio
obtained by the method of steepest descent@20,21# is

4p2N2^r̂~l!r̂~m!&c5
elem

bAus~l!uAus~m!u

S s~l!1s~m!

~l2m!2 1
s8~l!2s8~m!

~l2m!

1l21m22
s

2
~l1m!12CD . ~6.3!

Here s(z)5) i 51
4 (z2ai), s5a11a21a31a4 ~the sup-

port of the eigenvalues consists of the two segments@a1 ,a2#
and @a3 ,a4#), el511 for lP@a3 ,a4#, el521 for l
P@a1 ,a2#, andb51,2,4 depending on whetherM the ma-
trix is real orthogonal, Hermitian or self-dual quartonian.C
is an undetermined constant in this method. It turns out t
the same correlator can be calculated using other meth
which yield different values ofC. For example in@21# we
obtained an asymptotic form ofPn(x) for the symmetric
double-well potentials forn close toN. Using this form ofPn
~which corresponds to the ‘‘symmetric solution’’!, we found
the smoothed̂r̂ r̂&c given by Eq.~6.3!, with C5(21)N, ~the
origin of this nontrivialN dependence, also observed in@22#,
is explained in@23#!. On the other hand in Ref.@24#, this
correlator was calculated by the loop equation method st
ing from an asymmetricV and taking the limit of a symmet
ric potential whereC was found to be2 1

2 $(a21b2)2(a
1b)2@E(k)/K(k)#%, whereE(k) andK(k) are complete el-
liptic integrals of the first and second kind andk
5-7
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52Aab/(a1b). We conjecture that different values ofC
corresond to different solutions of the recurrence coe
cients.

In this section, we have shown the multiple solutions d
cussed in Sec. IV give rise to different correlation functio
An interesting feature of the solutions is that there is a n
trivial N dependence that survives in the largeN limit. In
particular, for the symmetric solution we have shown a d
ference between odd and evenN in the thermodynamic limit.
This is reminiscent of the behavior in a model for glasses@9#.

VII. THE CONNECTION OF RANDOM MATRIX MODELS
WITH A SIMPLE MODEL OF STRUCTURAL

GLASSES

This section is concerned with building up a connect
with the study of structural glasses in the high temperat
phase, starting from the work of Refs.@2,3#. The Hamil-
tonianH51/n(aÞb(sa

•sb)p corresponds ton particles mov-
ing in an N-dimensional space, in the limitn,N→`. The
coordinates of the particles aresa5(s1

a
•••sN

a ) and a
51•••n. In the ‘‘spherical’’ case the particles are co
strained to move on the surfaceusau25N, for all a. In the
‘‘Ising’’ case they occupy only the vertices of a hypercu
si

a561.
The corresponding partition function is Z

5ebN2
Tr$s% exp@2b/aN tr(S†SS†S)#, where S is the N3n

rectangular matrix of elementssi
a , and Tr$s% runs over either

the spherical or the Ising measure. Heren5aN with a>1.
Using the largeN equivalence with the global constraint on
gets

Zsph'ebN2E dmE )
i 51

N

dxi expS 2N2
bm

2
2bE@x# D .

~7.1!

The xiAN are the ‘‘diagonal’’ values ofS in its canonical
form and E@x#[N( i 51

N V(xi)2(1/2b)( iÞ j lnuxi
22xj

2u where
x5(x1 ,x2 , . . . ,xN) andV(x) is given by

V~x!5S 1

a
x42

m

2a
x22

~a21!

b
lnuxu D . ~7.2!

This potential has the form of the generalized Penner mo
We show briefly~see Ref.@4#! that a very closely related
model that can be exactly solved, the Gaussian Pen
model, has two cuts and multiple solutions. So the ab
model, which is a variant of the Penner model with two cu
is also conjectured to have multiple solutions.

The potential for a general Penner model isV(M )
5V0(M )2t ln M, where V0 is a polynomial. If V0(M )
5 1

2 mM2 the model is the Gaussian Penner model where
can rewrite lnM51

2ln M2. This hasZ2 symmetry and the po
tential is a double well with eigenvalues distributed in d
connected segments. The partition function for the Gaus
Penner model in terms of its eigenvaluesxi is @25#
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Z5E ) dxi exp@2E~x!#, ~7.3!

whereE@x#5N( i 51
N V(xi)22( iÞ j lnuxi2xju

V~x!5NS m

2
x22t lnuxu D . ~7.4!

This potential is similar to that of Eq.~7.2!, in that it has a
double-well potential involving lnuxu. We will show explicitly
that this has multiple solutions. We consider the situation
t.0.

The recurrence relations for a general Penner model
duce to

n

N
5ARn^n21uV08~M̂ !un&2tARn^n21uM̂ 21in&,

05^nuV08~M̂ !in&2t^nuM̂ 21un&. ~7.5!

Denoting Wn5ARn^n21uV08(M̂ )in&, and Yn

5^nuV08(M̂ )in&, for the Gaussian Penner modelWn5mRn

and Yn5mSn . We can consider as in Sec. IV, a period
ansatz forRn and Sn , which leads to four equations bu
again only three independent equations,

C1D50,

A1B2CD5
2x1t

m
,

AB5
x~x1t !

m2
. ~7.6!

Thus there is an infinite class of solutions labeled by o
function of x in the largeN limit. For the ‘‘symmetric solu-
tion,’’ C5D50 andA5x/m, B5(x1t)/m while for the
maximally asymmetric solution,A5B5(1/m)Ax(x1t) and
C25(1/m)@(2x1t)22Ax(x1t)#. Once again Eq.~7.6!
fixes the same combinations that appear in the genera
function of the Gaussian Penner model. Thus in the largN
limit the eigenvalue density and free energy are identical
the full infinite class of solutions satisfying Eq.~7.6!.

For the symmetric solution̂nuM̂ 21un&50 by Z2 symme-
try and Sn50, thus Eq.~7.5! yields Rn5n/mN for n even
and Rn5n/mN1t/m for n odd. This is an exact solution
hence the exact free energy may be found to beG
5(k51

N/221k ln@(2k1m11)(2k1m21)#, where t5211m/N.
Expanding in powers ofm we get

G5 1
4 m2 ln m1 1

12 ln m•••. ~7.7!

Note that the coefficient of the second term lnm is x15 1
12 ,

which corresponds to the first subleading correct
in the 1/N expansion. For the maximally asymmetric sol
tion in the double-scaled limitRn'„G@1/2(N2n1m
13/2)#/G@1/2(N2n1m11/2)#…, and the free energy isG
5-8
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5(k51
N/221k ln@(2k1m11/2)(2k1m21/2)#1•••. On expand-

ing in powers ofm the free energy is

G5 1
4 m2 ln m2 5

48 ln m•••. ~7.8!

The coefficient of the second term is 5/48. Here in the Gau
ian Penner model we see that though the symmetric
maximally asymmetric solutions give the same result in
large N limit, the free energies are very different at high
orders. This establishes that in the Gaussian Penner m
multiple solutions are present, which give the same free
ergy in the largeN limit but differ at higher orders. As in Sec
VI certain correlation functions will be different for thes
solutions since they depend on the recursion coefficents

The potentialV(x) for the glass model discussed in th
high temperature region is qualitatively similar to theV(x)
for the Gaussian Penner model in that both have dou
wells. This feature is the same for theM4 model discussed in
earlier sections. Since these later models, which have
cuts in their eigenvalue density, have been shown to h
multiple solutions, it is conjectured here that the glass mo
described above in the high temperature phase should
have multiple solutions. It would be useful to show this e
plicitly in the future.

More recent work@26# suggests that the number of mu
tiple solutions grows exponentially withN. This gives further
support for glassy behavior in these gapped random ma
models.

VIII. CONCLUSIONS

To conclude, ample evidence has been provided for
existence of multiple solutions in random matrix mode
s.

ys

B
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with gaps. First a simple motivation for the presence of m
tiple solutions is given and then it is made more prec
using the recurrence coefficients of the orthogonal polyno
als of the system. Further, numerical evidence is given
the existence of multiple solutions in this context. In t
largeN limit the free energy, generating function, and dens
are the same. Differences between the multiple solutions
seen in the free energy at higher orders in 1/N as well as in
correlation functions.

Connections with the high temperature phase of struct
glasses have been made to matrix models@2,3#. These are a
variant of the Penner model with two cuts. A simpler mod
the Gaussian Penner model, with disconnected segmen
shown to have these unusual multiple solutions as w
Hence the matrix models with gaps with connections to gl
models are likely to have this unusual property. The rugg
ness of the landscape needs to be studied. It would be nic
be able to cast these models in the replica framework but
remains a difficult task at this point, as the Hubbar
Stratanovich transformations, which are technically nee
for the Gaussian random matrix models Ref.@27#, are not
available here for the simpleM4 and the Gaussian Penne
model or any other gapped random matrix models. This
future goal in this problem.
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